Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing.
نویسندگان
چکیده
The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3' processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA-FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3' processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing.
منابع مشابه
Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets
We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin regulators, the histone demethylase FLD and the M...
متن کاملFY Is an RNA 3′ End-Processing Factor that Interacts with FCA to Control the Arabidopsis Floral Transition
The nuclear RNA binding protein, FCA, promotes Arabidopsis reproductive development. FCA contains a WW protein interaction domain that is essential for FCA function. We have identified FY as a protein partner for this domain. FY belongs to a highly conserved group of eukaryotic proteins represented in Saccharomyces cerevisiae by the RNA 3' end-processing factor, Pfs2p. FY regulates RNA 3' end p...
متن کاملAn allelic series reveals essential roles for FY in plant development in addition to flowering-time control.
The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcrip...
متن کاملAdditional targets of the Arabidopsis autonomous pathway members, FCA and FY.
A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical se...
متن کاملArabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time.
The timely transition from vegetative to reproductive growth is vital for reproductive success in plants. It has been suggested that messenger RNA 3'-end processing plays a role in this transition. Specifically, two autonomous factors in the Arabidopsis thaliana flowering time control pathway, FY and FCA, are required for the alternative polyadenylation of FCA pre-mRNA. In this paper we provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 21 شماره
صفحات -
تاریخ انتشار 2009